Rapidity dependence of momentum anisotropies in nuclear collisions*

Ulrich Heinz¹ and Peter Kolb²

¹Department of Physics The Ohio State University 174 West 18th Avenue Columbus, OH 43210

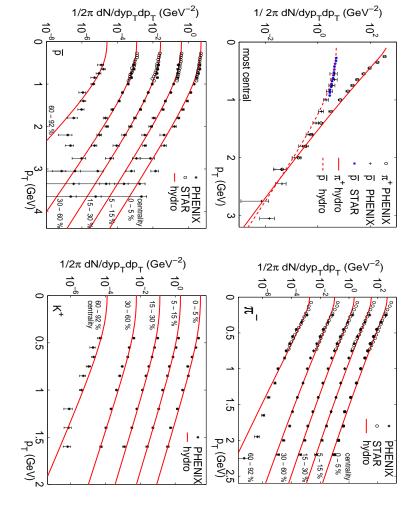
²Physik-Department TU München D-85747 Garching Germany

presented at: Quark Matter 2004, Oakland, Jan. 11-18, 2004

*Work supported by the U.S. Department of Energy (DOE) and Gesellschaft für Schwerionenforschung (GSI).

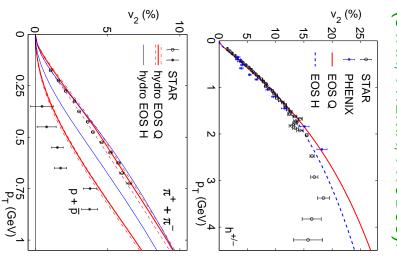
Introduction: The successes of hydrodynamics at RHIC

Single particle spectra from central and peripheral Au+Au @ 130 A GeV (STAR, PHENIX):



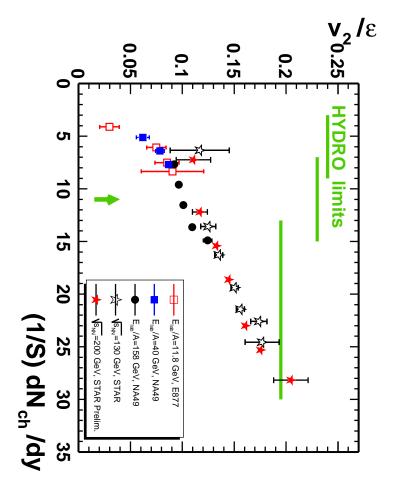
Model parameters fixed with π , \bar{p} spectra at b=0; all other spectra predicted (UH&PK,hep-ph/0204061).

Momentum and rest mass dependence of elliptic flow (STAR, PHENIX, PHOBOS):

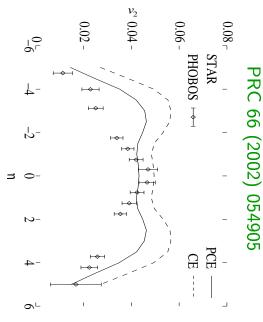


Limits of thermalization: smaller and diluter systems

STAR, PRC 66 ('02) 034904; NA49, PRC 68 ('03) 034903



T. Hirano, PRC 65 (2002) 011901;



Are these two observations related?

- STAR/NA49 analysis suggests that $\frac{v_2^{
 m measured}}{hvAr}$ $\left(S(b)$ is transverse overlap areaight). $rac{\omega_{
 m hydro}}{v_2^{
 m hydro}}$ scales with $rac{1}{S}rac{dN_{
 m ch}}{dy} \propto \epsilon_{
 m Bj}(au{=}1~{
 m fm/}c)$
- quark-hadron transition (PK, Sollfrank, UH, PRC 62 (2000) 054909). predicts v_2/ϵ to slightly $\mathsf{decrease}$ between AGS and RHIC, due to softening of EOS by Data for scaled elliptic flow increase with initial energy density whereas hydrodynamics

Strategy and Overview:

- initial transverse distribution with longitudinal position (i.e. with space-time rapidity). To understand rapidity dependence of elliptic flow, need model which correlates the
- 2. Use weak hydrodynamic evolution in rapidity direction and Bjorken scaling $\eta_s = y$ during transverse plane) with finally measured rapidity distribution in momentum space particle formation stage to relate initial longitudinal spatial distribution (integrated over
- 3. Implement momentum conservation: In non-central collisions, due to asymmetric overentropy density profile $s(x,y,\eta_s; au_0)$ [Sollfrank et al. 1997, Hirano 2001]. $Y(x,y;b) \implies$ this correlates longitudinal and transverse coordinates in the initial lap, matter at different transverse positions travels at different average rapidities
- impact parameter allows to determine the initial spatial deformation $\epsilon_x(\eta_s;b) = \langle \langle y^2 - x^2 \rangle \rangle / \langle \langle y^2 + x^2 \rangle \rangle$ From resulting initial entropy profile we compute initial energy density distribution which as well as the transverse overlap area $S(\eta_s;b)$ as function of longitudinal position and

- 5. We use longitudinally boost-invariant hydrodynamics and the identification $\eta_s=y$ to sponding to minimum bias). All normalization constants are fixed in central collisions at $\sqrt{s} = 200 A \text{ GeV}$ compute from the initial $s(x,y,\eta_s; au_0)$ the differential directed and elliptic flows $v_1(p_\perp,y)$ and $v_2(p_\perp,y)$, at all rapidities y for Au+Au at $b=\langle b \rangle=6.8\,{
 m fm}$ (corre-
- The hydrodynamically calculated elliptic flow values for pions, corrected for reso $v_2^{
 m data}/v_2^{
 m hydro}$ at midrapidity at RHIC, SPS and AGS energies is extracted from the NA49 compilation of the measured centrality dependence of which depends on $y=\eta_s$ through the combination $x\equiv (1/S)(dN_{
 m ch}/dy)$ and which nance feeddown, are then multiplied with a thermalization coefficient $F_{
 m therm}(y) \le 1$
- 7. The thus corrected v_2 values are found to provide a fair representation of the PHOBOS data on $v_2(\eta)$
- At $\eta_s \neq 0$ the initial conditions are asymmetric with respect to the x=0. This results in a nonzero differential directed flow at forward rapidities, with vanishing p_\perp -integral.

Mean rapidity as a function of transverse position:

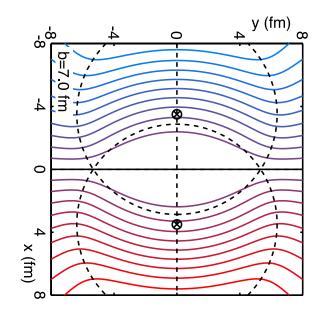
Matter at transverse position (x,y) moves with average rapidity

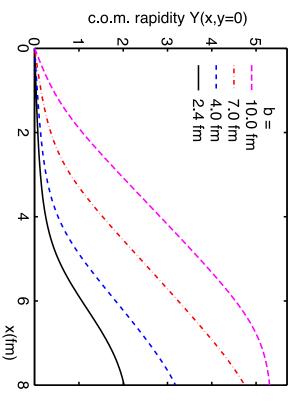
$$Y(x,y) = \frac{1}{2} \ln \frac{dE(x,y) + dP(x,y)}{dE(x,y) - dP(x,y)} = \frac{1}{2} \ln \frac{(t_1(x,y) + t_2(x,y)) + v_{\text{beam}} \cdot (t_1(x,y) - t_2(x,y))}{(t_1(x,y) + t_2(x,y)) - v_{\text{beam}} \cdot (t_1(x,y) - t_2(x,y))}$$

$$\text{where} \quad t_{1,2} = T_A(x \pm b/2,y); \quad T_A(x,y) = \int_{-\infty}^{\infty} dz \, \rho_A(x,y,z) \, ; \quad \rho_A(x,y,z) = \frac{\rho_0}{\exp((r-R_A)/a) + 1} \, .$$

Contours for $Y=0,\pm 0.5,\,\pm 1,\ldots$

Radial increase of Y for various centralities:





Parametrization of the rapidity spectra:

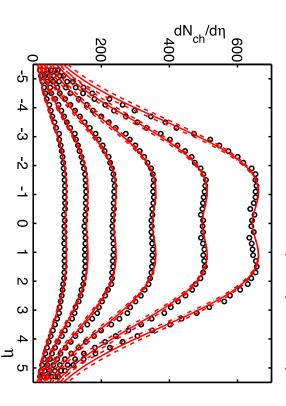
- Let initially produced quanta move on straight lines $\Rightarrow z/t = v_{
 m L} \Rightarrow \eta_s = y$
- Hence initially $\left[\frac{dS}{dy}\right]_{\mathrm{init}} \sim \int s(\boldsymbol{r}_{\perp},\eta_s=y;\tau_0)\,d^2r_{\perp}$. Since hydrodynamic evolution in rapidity direction is very weak (Eskola et al. (1998), Hirano et al. (2001)), we set $\left[\frac{dN_{\mathrm{ch}}}{dy}\right]_{\mathrm{final}} \propto \left[\frac{dS}{dy}\right]_{\mathrm{init}}$
- This fixes initial longitudinal spatial distribution through measured rapidity distribution.
- double-Gaussian ansatz tions in Au+Au are well described by a The measured pseudorapidity distribu-

$$\frac{dN_{\rm ch}}{dy} \propto e^{-\frac{(y-a)^2}{2a^2}} + e^{-\frac{(y+a)^2}{2a^2}}$$

 $m=m_\pi$ and $\langle p_T \rangle pprox 0.4\,{
m GeV}$. after transforming from y to η using

- tralities for $\sqrt{s} = 19.6$, 130 and 200 respectively (see, e.g., figure at right). This works well for Au+Au at all cen A GeV, using $a=1.15,\ 1.8$ and 1.9
- This ansatz does *not* work for d+Au.

Au+Au @ 200 A GeV (BRAHMS PRL 88 (2002) 202301; PHOBOS PRL 91 (2003) 052303):



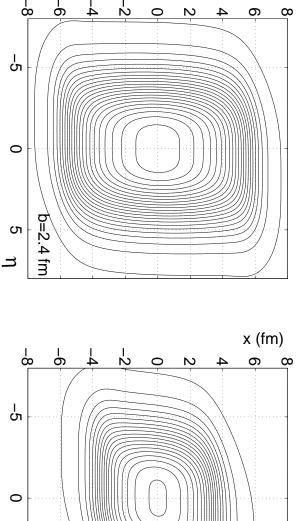
Initial 3-d density distribution

at transverse position (x, y): A transverse wounded nucleon density profile is distributed longitudinally by a double-Gaussian in space-time rapidity, shifted by the average rapidity $Y(x,\,y;b)$ of the matter

$$s(x,y,\eta_s;b) \propto \left(n_1^{ ext{WN}}(x,y;b) + n_2^{ ext{WN}}(x,y;b)
ight) \left(e^{rac{(\eta_s - Y(x,y;b) - a)^2}{2a^2}} + e^{rac{(\eta_s - Y(x,y;b) + a)^2}{2a^2}}
ight)$$

Contours of constant entropy density in the (x,η_s) plane

x (fm)

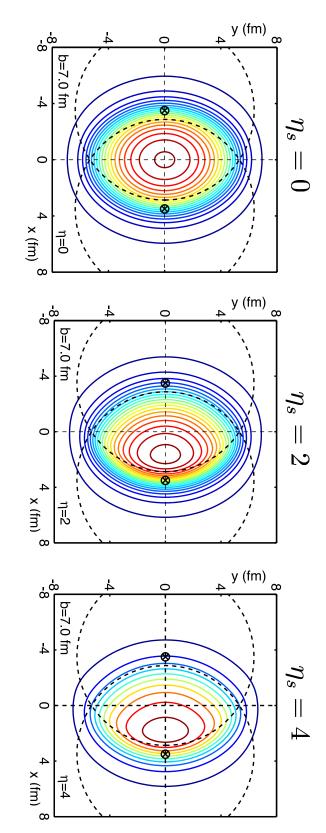


b=7.0 fm

S

Initial transverse density distribution at non-zero rapidity

overlap area and the transverse density distribution at different rapidities: Cuts through this distribution at fixed η_s allow to determine the transverse



Contours of constant entropy density at different space-time rapidities

elliptically deformed (\Rightarrow larger hydrodynamic v_2 !) and asymmetric with At forward rapidities, the transverse distributions become more strongly respect to $x = 0 \iff v_1(p_\perp) \neq 0!$.

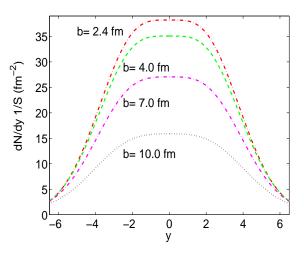
Transverse overlap area and spatial eccentricity at $\eta_s \neq 0$

The transverse overlap area decreases at forward rapidities:

But the rapidity density dN/dy decreases faster:

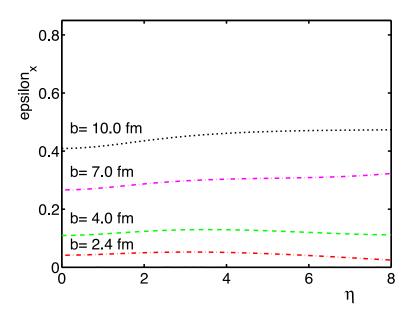
Transverse overlap area $S(\eta_s)$

$$x \equiv (1/S)(dN/dy)$$

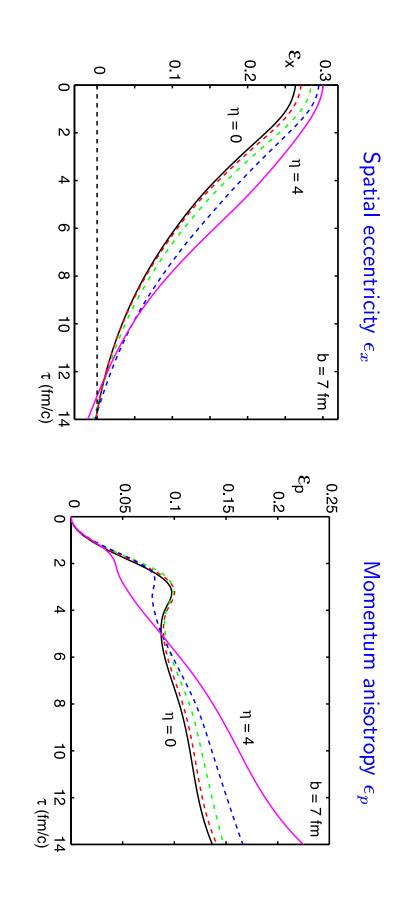


The initial spatial eccentricity increases by $\sim 15\%$ at $\eta_s > 0$:

Spatial eccentricity $\epsilon_x(\eta_s; au_0)$



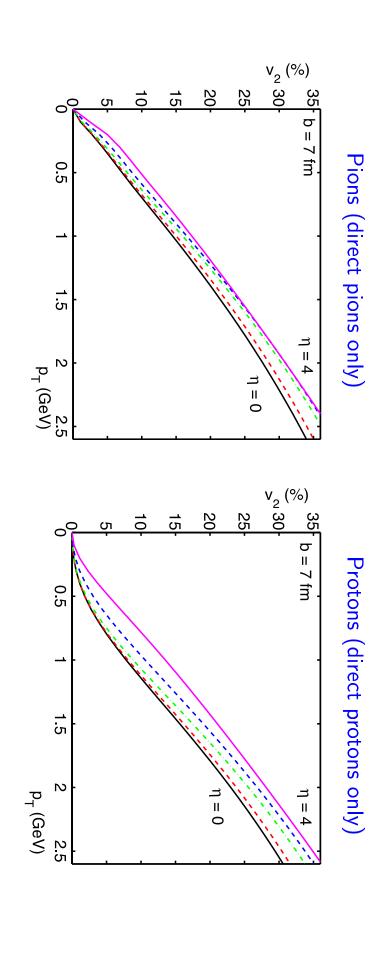
Time evolution of spatial and momentum anisotropies



Moving towards $\eta_s>0$ has same effect as staying at midrapidity and moving towards lower \sqrt{s} ! (See PK, Sollfrank, UH, PRC 62 (2000) 054909)

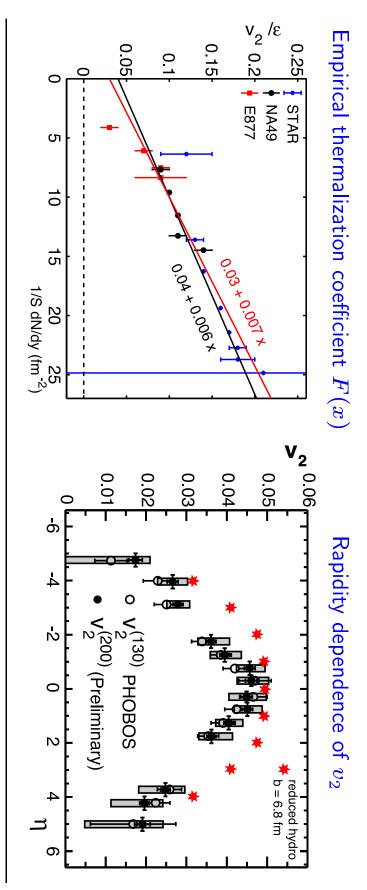
Elliptic flow $v_2(p_\perp,y)$ at y eq 0

- tion. Elliptic flow increases at y>0, due to increasing initial spatial deforma-
- very forward rapidities Earlier freeze-out due to smaller initial energy density counteracts this at



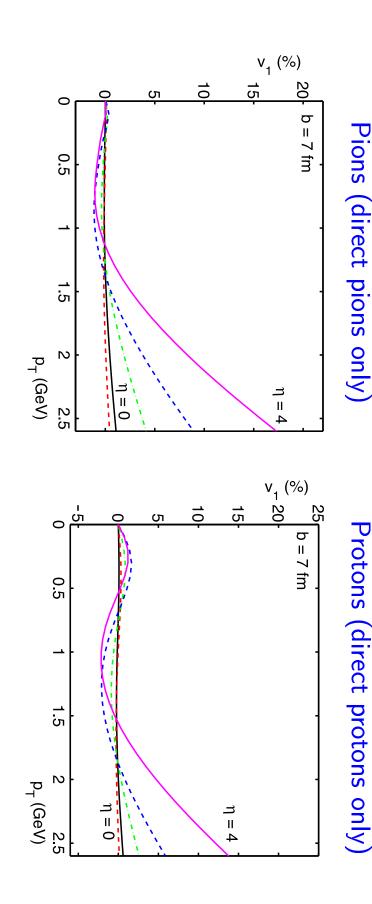
Rapidity dependence of measured elliptic flow

- account for the dilution from resonance decays (see PK, Sollfrank, UH, PRC 62 (2000) 054909) The hydrodynamically calculated $\,v_2$ values for pions are reduced by hand by 15% to
- We fit the measured ratio v_2/ϵ_x as a function of $x\equiv (1/S)(dN_{
 m ch}/dy)$ (left diagram) coefficient" F(x). and reduce the hydrodynamic v_2/ϵ_x at each y by the corresponding "thermalization
- The result compares well with the PHOBOS data (right diagram).



Directed flow $v_1(p_\perp,y)$ at y eq 0

at $y \neq 0$ whose p_{\perp} -integral with dN/d^2p_{\perp} vanishes: conditions at $\eta_s
eq 0$ cause a non-vanishing differential elliptic flow $v_1(p_\perp)$ forbids the appearance of a non-zero $v_{
m 1}$, the asymmetric transverse initial Although the longitudinal boost-invariance of our hydrodynamic model



Conclusions

- at RHIC and for all centralities at lower collision energies consistent with a similar deviation at midrapidity in peripheral collisions flow in min. bias $\mathsf{Au} + \mathsf{Au}$ at RHIC at forward rapidities appears to be The deviation from the hydrodynamic model of the observed elliptic
- Whereas very good local thermal equilibrium is achieved in central $\mathsf{Au} + \mathsf{Au}$ collisions at RHIC near midrapidity, thermalization gradually breaks down in smaller collision systems and at lower collision energies.
- A qualitatively consistent description of all the data is obtained by the energy density at $\tau = 1 \text{ fm}/c$ assuming that the "thermalization coefficient" F which describes the fractional degree of thermalization reached in the collision scales with